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SUMMARY

The present numerical study is motivated by the challenge to simulate the three-dimensional spatial
dynamics of a co-rotating vortex system, through the development of an elliptic instability (C. R. Phys.
2005; 6(4–5):431–450) using a high-order solver of the compressible Navier–Stokes equations. This
phenomenon was studied previously only by temporal simulations. The interest of spatial simulation is first
to analyse the effect of the axial velocity on the merging process, which are neglected with the temporal
approach, and to study interaction with jet flows. The numerical problem is the choice of boundary
conditions (BCs): for the inflow and outflow conditions as well as for the lateral BCs to represent a fluid
at rest. Special attention will be paid to the latter because the difficulties come from the non-zero circula-
tion of the vortex system considered. The classic BCs of Poinsot and Lele (J. Comput. Phys. 1992; 101:
104–129) based on the characteristics wave approach have been modified to be more adapted to the physics
considered here. This new BC is based on the assumption of an irrotational flow close to the borders (in
order to determine the magnitude of the waves), as the vorticity field is concentrated on the computational
domain centre where the vortex system is initially placed. After a validation of these improved BCs and
of all numerical tools used such as selective artificial dissipation, two spatial simulations of the vortex
breakdown phenomenon have allowed validating our solver for a three-dimensional case by comparison
with the results of Ruith et al. (J. Fluid Mech. 2003; 486:331–378). Thus, the merging process of equal
co-rotating vortices through the development of elliptic instability with axial velocity were simulated.
Three vortex flow configurations were considered with different vortex systems and velocity peaks ratio
(azimuthal and axial velocities).

A numerical tool has been elaborated and validated for the simulation of spatial instability development
in vortex flows. The first results show this ability, and the influence of the axial velocity on the dynamics
of the instabilities. However, spatial simulations are limited by the computational resources (linked to the
resolution and axial domain length to capture the merging process) and restricted to academic vortex flow
configuration. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The wake of an aircraft is composed of several intense vortices, which can persist for a few
minutes in the atmosphere. They may be hazardous for following aircrafts encountering the wake,
in particular during take-off and landing phases. One needs to characterize the structure of these
trailing vortices to develop new concepts to accelerate their decay and reduce the latency time
between the landing or take-off of two aircrafts. To that end, the mechanism of this vortex sheet
generation between the trailing wake just downstream of the aircraft wing and the vortex system
in the far-field (generally composed by a counter-rotating pair) must be studied in detail. The main
physical phenomenon occurring in the extended near-field (a few wingspans behind the aircraft)
is the merging of the co-rotating vortices generated at flap and wing tip.

This phenomenon has received much attention over the last years by experimental, theoretical
and numerical studies. Cerretelli and Williamson [1] have shown in their experiments that this
merging process can be decomposed into four stages at low Reynolds numbers. They found that the
merging can be explained by the generation of an antisymmetric vorticity field during the process,
inducing a velocity pushing one vortex toward the other. Moreover, they showed that the merging
time is a function of both the Reynolds number and the initial characteristic ratio a/b, where a is
the vortex core size and b the separation distance between the two vortices. Ferreira de Sousa and
Pereira [2] confirmed the previous mechanism by using temporal two-dimensional direct numerical
simulations. Orlandi [3] investigated the dependence of the merging with Reynolds number and the
ratio a/b by spatial three-dimensional DNS. He demonstrated that the merging could be detected
by a large increase of pressure extrema and that this three-dimensional merging can be more
complex than the one obtained by two-dimensional simulations, the complexity depending largely
on the axial disturbances initially imposed on the two vortices. The weak point of the previous
simulations is the use of periodic or symmetry boundary conditions (BCs) for the domain faces,
which are parallel to the vortex axis. Theoretically, when studying two co-rotating vortices, the
total circulation is not equal to zero and imposing periodic or symmetry conditions generates
strains on the vortices. To minimize the impact of these boundary effects, large computational
domains are employed, which can be out of cost for a three-dimensional DNS [3]. Further, these
conditions produce a confinement effect: perturbations injected at the inflow could reflect on these
lateral boundaries and impact the vortices, perturbing the simulation of two vortices evolving in a
free atmosphere.

The spatial simulation is expected to take into account the curvature of the vortex, which is
absent with the temporal one. Indeed, the temporal approach is based on the assumption that the
axial gradients are neglected compared to the transverse ones, thus the vortex axis remaining in
a plane. The present study aims at bringing all numerical treatments together to perform a space
evolving simulation of two co-rotating vortices. In particular, the lateral BCs that are suitable for
flows with a non-zero total circulation are investigated.

To define artificial BCs, the concept of non-reflecting BC can be used. Their underlying prin-
ciple is to cancel the wave entering in the computational domain as proposed by Thompson [4].
Other methods exist to specify a non-reflective BC as proposed by Giles [5] who uses a Fourier
decomposition of characteristic waves or by Tam and Dong [6] or Bayliss and Turkel [7] who
define radiative BCs for computational aero-acoustics. The main deficiency of these BCs lies in
their impossibility to determine incoming waves, which bring physical information into the compu-
tational domain. Rudy and Strikwerda [8] propose a partially non-reflecting BC, specifying a static
pressure through a subsonic outflow, which is determined by the outside of the computational
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domain. All these approaches are unified by Poinsot and Lele [9], who propose a methodology
to take into account physical properties to obtain numerical BCs. Today, there are no artificial
BCs available and suitable for all flows, which are at the same time non-reflective and capable to
determine physical incoming waves. This deficiency leads to the use of non-perfect BCs, which
produce unphysical waves and possibly non-physical solutions [10] in the worst case. To avoid
such phenomenon, a classical way is to use a buffer zone or sponge layer, adjacent to the physical
domain of interest, where either the equations are gradually modified or the solution is filtered in
order to reduce disturbances at the outflow boundary. Colonius [11] proposed an extended review
of these techniques that include filtering, relaxation towards a known solution and mesh stretching
to render the perturbations decreasingly resolved, hoping that they will be nearly cancelled before
reaching the boundary.

This paper is organized as follows: the first two parts describe the compressible Navier–Stokes
(NS) equations and the characteristic wave decomposition on which our new boundary treatment is
based. All BCs used for the present study are exposed and discussed. After a brief review of other
necessary numerical tools such as artificial dissipation or sponge layer, the influence of all the
numerical ingredients is presented using simple validation test cases. In particular, the improvement
of the lateral and inflow BCs is discussed, as they represent the main difficulty to simulate a vortex
dynamics. These conditions constitute a typical feature of a space evolution simulation. Section 6 is
devoted to spatial simulations of vortex breakdown phenomenon. In the last section, a first analysis
of space evolving simulations is presented and discussed. Three cases are studied with different
axial velocities. Until now, to our knowledge except the approach proposed by Orlandi [3] for
incompressible flow, all simulations of vortex dynamics (such as the merging process) are based
on a temporal approach. For these kind of simulations, the axial velocity is not taken into account,
which greatly simplifies the simulation.

2. GOVERNING EQUATIONS

The governing equations are the three-dimensional compressible NS equations, given in their
non-dimensionalized formulation, in an orthonormal system and in a skew-symmetric form
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and �i j =�(�ui/�x j +�u j/�xi − 2
3�i j�uk/�xk) (with summation convention).

The dynamic viscosity � is given by Sutherland’s law. With a constant Prandtl number Pr , the
thermal conductivity coefficient can be written as �=�cp/Pr with cp =�R/(�−1) (perfect gas
R=287J/kgK) the specific heat capacity at constant pressure and for air Pr=0.72 and �=1.4.
All simulations were performed with a Reynolds number Re based on the vortex circulation �
(except for the simulations presented in the Section 6) and air viscosity 	:

Re=Re� = �

	
(5)

In order to close the system, the following two relations must be considered:

p = �RT

�E = 1

2
�(u2+v2+w2)+ p
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(6)

The use of a skew-symmetric form is motivated by the conservation of the kinetic energy, which
preserves from aliasing phenomenon [12].

The NS equations are discretized using the finite difference method, with a sixth-order compact
scheme for the convective and diffusive terms. Time integration is performed by a third-order
Runge–Kutta method. The computational domain is discretized by a stretched Cartesian mesh. For
the computation of the spatial derivatives on this mesh, an extension of the Lele compact scheme
[13] is used. The reader is invited to refer to the work by Gamet et al. [14] for the formulae.
Figure 1 represents the computational domain and its different faces where the BC are applied. At
the bottom face a pair of co-rotating vortices is imposed, knowing their properties (circulation and
size). For the lateral faces, an original BC generating low perturbations and allowing incoming
flow is used. This is motivated by the aim to represent real ambient flow conditions at rest. At the
top face, a semi-non-reflecting BC is prescribed, which is based on the Giles theory [5]. All these
conditions are based on a characteristic analysis, which is detailed in the next section.
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Lateral face

Bottom face

Top face

Figure 1. Computational domain for the spatial simulation of a two co-rotating vortex system, governed
by the merging process leading to a single vortex.

3. NS-CHARACTERISTIC BCs

3.1. Basic formulation

In order to simplify the expressions, only the boundary at the face x= xmax is considered. The NS
equations are reformulated at this face to derive the amplitude of the characteristic waves normal
to the boundary. Primitive variables are introduced such as V =[�,u,v,w, p]T, and P the matrix
�U/�V . The following form of the NS equations is obtained by:
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and the Jacobian matrix Ax is defined by

Ax = �Fx
�U

(9)

The matrix P−1Ax P is diagonalizable. Denoting � as the diagonal matrix and R as the right
eigenvector matrix, Equation (7) becomes

R−1 �V
�t

+�R−1 �V
�x

= R−1P−1S (10)

where �=Diag(u−c,u,u,u,u+c)=Diag(�1,�2,�3,�4,�5) and c=√
�P/� the sound speed.
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The vector defined by L=�R−1�V /�x represents the strength of the characteristic waves,
with its components Li being associated to the wave �i . It can be shown [9] that
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According to the sign of the eigenvalues, the discretization at the boundary has to be done from
either inside or outside the domain:

(i) A positive eigenvalue (�i>0) means that the wave is leaving the computational domain and
the corresponding value of Li must be specified by information inside the domain.

(ii) A negative eigenvalue (�i<0) means that the wave is entering the computational domain
and the value of Li has to be determined from physical conditions, which characterize
the ambient surrounding. The choice of proper conditions is the aim of the proposed
improvement for the lateral faces.

In the forthcoming section are detailed the different formulations proposed for the lateral, top and
bottom face, respectively.

3.2. Lateral BCs

Three formulations have been investigated on their ability to simulate the dynamics of two co-
rotating vortices. In order to explain the choice of the BCs, two-dimensional simulations were
performed on two equal vortices placed in the centre of the computational domain (a square box).
In the absence of external forces, the two vortices are expected to turn around each other without
deviating to the centre of the domain. The challenge for the numerical simulation is to really
maintain the vortex system in the centre of the domain: indeed, no physical phenomenon assures
this position, and any small grid skewness can lead, in the extreme case, to the exit of the vortices
from the computational domain.

While the use of periodic or symmetric BCs at the lateral faces ensures that the vortex system is
not deviated, these conditions violate the fact that the total circulation is non-zero. Thus, prescribing
such conditions introduces a confinement effect, as it will be shown in Section 5.1, and can lead
to the modifications of the dynamics of the merging process. In general, the use of large domains
associated with these conditions minimizes these effects. However, for a spatial simulation, these
conditions cannot be applied due to their reflective character.
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Three methods to determinate the strength of ingoing waves are investigated:

(i) The first one, proposed by Rudy and Strikwerda [8], imposes a relaxation on the ingoing
acoustic characteristic wave to maintain the static pressure in the computational domain at
a prescribed value. For the remaining ingoing waves (vorticity or entropy), the strength is
simply set to zero. We notice that this may not work well, because the ingoing velocity due
to the non-zero circulation propagates information from the outside, and it is in contradiction
with zero-strength ingoing wave. At the face x= xmax, the characteristic wave strengths are

L1 = 

c

L
(p− pimp) if �1<0

Li = 0 ∀i ∈{2, . . . ,5} for which �i<0
(12)

where 
 is an arbitrary constant, 
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(ii) The second formulation is a mixing between the previous BC and an inflow condition. In
a first stage, the mean values of the stagnation enthalpy hst and entropy s at this boundary
are calculated. These values are then used to determine the incoming flow, but the velocity
direction has to be specified to calculate the two remaining unknown wave strengths L3
and L4. Usually, the direction is simply assumed to be normal to the boundary. Here, we
propose to assume that the incoming flow is irrotational, which means that the vorticity
normal to the boundary is assumed to be zero. For the face x= xmax it leads to
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• if u>0 and u−c<0, a relaxation for the pressure is specified as in the first method (i).

(iii) The third formulation differs from the previous by the calculation of L3 and L4. The
velocity field in each plane normal to the z-axis is assumed to be written in the form of a
superposition of a vortex and a sink.

us =
N∑

n=0

1

rn
(an cos(n�)+bn sin(n�))

vs =
N∑

n=0

1

rn
(an sin(n�)−bn cos(n�))

(19)

In practice, our numerical experience show that five terms in this summation are enough.
For the determination of the coefficients an and bn , we match the velocity field calculated by
the NS-equations resolution and the expression (19) in a least-square sense. The matching
area consists of a band with a thickness of n points from the boundary. Here, n=10 to
be enough far away to the vortex dynamics and ensure the 1/rn behaviour. Then the L3
value is expressed with the previous series as follows:

L3=us
�vs

�x
(20)

In order to determine the strength L4, we can perform one of the two following methods:

• The x-component of the rotational is assumed to be zero leading to L4=u�u/�z (all
results presented in this paper with this BC were obtained following this method).

• The velocity component w is assumed to relax on a prescribed value.

3.3. Inflow BC

The natural choice of inflow BC for the simulation of spatial vortex dynamics is to impose the
vorticity field as inflow condition such as done by Orlandi [3]. The pressure is then calculated by
the resolution of the Poisson equation but this cannot be done with a compressible solver. Here,
a fundamental difference has to be noticed between incompressible and compressible flow solver
since merely information about vorticity is not sufficient to specify the inflow condition. Indeed,
like for a subsonic inflow and for a well-posed problem, four quantities must be imposed. The
following methods were tested:

(i) all three velocity components and the temperature are specified [9],
(ii) the velocity and temperature are imposed through the characteristic waves [15],
(iii) the stagnation pressure and temperature are specified with the two transverse velocity

components.

With the approach (i), temperature and axial velocity are assumed to be uniform and constant.
But this choice leads to a vortex breakdown as it will be shown in Section 6.

The second approach (ii) does not ensure that the transverse velocity components remain constant
in time. These (even small) intrinsic perturbations cause prematurely merging or unknown level
of perturbation, affecting the vortex dynamics.
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The last approach (iii) offers a higher degree of freedom. The stagnation pressure and temperature
are calculated at the first time iteration by

pst = p

(
1+ �−1

2
M2

)�/(�−1)

Tst = T

(
1+ �−1

2
M2

)
, M2= u2+v2+w2

c2

(21)

The tangential velocity components u and v are prescribed by the vortex strength, while the
temperature is assumed to be uniform (equal to 1/�−1). To determine these two stagnation
quantities, a field of pressure and axial velocity have to be chosen. The only constraint is that the
pressure should be equal to 1/� and the axial velocity must be set to a target value in the outer
region of the two vortices. Note that this field can change during the simulation, although the
stagnation quantities remain constant.

A Lamb–Oseen vortex model is used in the present numerical study. The corresponding pressure
field, denoted by p2D, can be determined analytically. The pressure field used to calculate the
stagnation pressure can then be expressed as

p= 1

�
+�

(
p2D− 1

�

)
(22)

where � is an arbitrary parameter (�∈[0,1]). This parameter allows modifying the deficit of
stagnation pressure in the vortex core, which corresponds to various axial velocities in the vortex
core. The final pressure field results from an equilibrium between pressure and centrifugal forces,
which can be expressed in polar coordinates system such as

�p
�r

=�
V 2

�

r
(23)

The classical method to implement this inflow condition is the following:

(i) Two non-dimensional equations impose that pst and Tst remain constant (15) and (16). The
components of the entropy wave (L2) and of one acoustic wave (L1 orL5) are determined
by setting the two time derivatives to zero.

(ii) These two previous equations correspond to a one-dimensional approximation. As our
objective is a three-dimensional simulation, the presence of extra transverse derivatives in
Equations (15) and (16) causes a time variation of the two quantities s and hst. To take into
account these variations, one can either add a relaxation to their imposed values, or directly
impose the prescribed values of the stagnation pressure and stagnation temperature after the
last Runge–Kutta step. For an inflow condition at the bottom face, these latter variables are
specified

• u,v as transverse velocity components,
• pst and Tst.

The axial velocity w (normal to the bottom face) is the only variable that is calculated by
the numerical scheme, the other components are deduced from the BC.
This method introduces small perturbations that cannot be controlled and quantified and
suffice to perturb the vortices and consequently does not allow the obtention of a time
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converged solution of the vortex system. This converged solution and the addition of a
random perturbation constitute the starting point of our simulation of the spatial development
of instabilities. The use of a converged solution has for us a particular importance since
it uncouples this development of instabilities from the transition phase between the initial
solution and the time converged one.
Another method, adopted in this study, consists in taking into account directly the trans-

verse terms in the Li calculations. The transverse derivatives can be included in the LODI
equations Equations (15) and (16) as

�s
�t

− 1

(�−1)�T
L2+

{
�s
�t

}
transverse

=0 (24)

where the last term contains the derivatives with respect to x and y. These terms are simply
obtained using
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)
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To ensure a constant entropy, the strength of the characteristic wave L2 is given by

L2=(�−1)�T

{
�s
�t

}
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(26)

With this choice, the temporal integration of the NS equations gives a constant entropy
without further treatments. The same treatment is applied to the stagnation enthalpy as
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(27)

A formulation for L1 or L5 can now be found with �hst/�t=0 exactly respected.

3.4. Outflow BC

Since no inflow is expected through the top face, a simple relaxation is imposed on the pressure.
Nevertheless, since the pressure decreases in the vortex core region, this relaxation must vanish
in this area. If the relaxation procedure is preserved in the vortex core, this acts like a pressure
wave travelling in the vortex, potentially leading to the destruction of the vortex structure (vortex
bursting [16]).

A blending function is thus introduced to reduce the relaxation factor 
 (Equation (12)) smoothly
to zero at the location of maximum vorticity defining the vortex centre. The blending function is
defined by


=
∗
(
1−min

[
1,max

(
0,

−l

l

)])
, l =εmax (28)

where max represents the maximum of the vorticity at the top face. 
∗ and ε are arbitrary param-
eters, and we propose to set 
∗ ∈[0.0,1.0] and ε≈0.001. The value of 
∗ permits to recover the
prescribed value of the relaxation parameter as suggested by Rudy and Strikwerda (Equation (12)).
The second value influences the size of the region around the point of maximal vorticity a lower
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value leads to larger size. The proposed value is obtained by the study of an isolated vortex as
the merging process reduces to one vortex, and the relaxation has to be inactive in those regions
where the pressure is lower than 1% of the free stream value.

3.5. Outflow BCs: Giles approach

The outflow BC at the top plane based on the Poinsot–Lele approach, is perfectly non-reflective
only for plane waves, which have a propagation direction aligned to the boundary normal. For
other wave, this boundary treatment leads to unphysical reflecting waves. Giles proposed [5, 17]
a general theory to obtain a non-reflecting condition for the two-dimensional linearized Euler
equations. He discussed the different formulations depending on the steadiness or unsteadiness of
the flow. In the following, the general theory is briefly presented in the case of unsteady flow (as
in our final application).

3.5.1. Basic formulation. The starting point for the Giles analysis are the linearized Euler equations
for a Cartesian coordinates system about an average or reference primitive state vector V̄ =
(�̄, ū, v̄, w̄, p̄). For the perturbed state variable vector V around the state V̄ , the equations are

�V
�t

+A
�V
�x

+B
�V
�y

+C
�V
�z

=0 (29)

The Jacobian matrices A, B,C are constant and calculated from the average state. To separate
waves into incoming and outgoing ones, the perturbed state is decomposed into a Fourier series

V (x, y, z, t)=
∞∑

�=−∞
v�e

i(−�t+k�x+l�y+m�z) (30)

Introducing this relation into Equation (29) gives a dispersion relation, which relates the wave
numbers k, l, m to the frequency  over an homogeneous fifth-order polynomial expression.

To formulate a condition for a non-reflecting axial boundary, we decompose the particular mode
V� into the sum of its eigenfunctions

V� =
(

5∑
n=1

anq
R
n e

imnz

)
ei(−t+kx+ly) (31)

where mn represents one of the five eigenvalues corresponding to acoustic, entropic or rotational
modes and qRn is the corresponding right eigenvector.

Reflections at the boundary can now be prevented by specifying an =0 for each n in Equation (31)
corresponding to an incoming wave.

The latter condition can be expressed by introducing the left eigenvector qLn corresponding to
the same incoming wave by

qLn V� =0 with n the incoming wave index (32)

The dispersion relation shows that mn/ and qLn depend on �=k/ and �= l/. To obtain a local
BC, the left eigenvector qLn is expanded into a Taylor series as function of � and �. The following
second-order approximation is

qLn (�,�)≈qLn (0,0)+�
�qLn
��

(0,0)+�
�qLn
��

(0,0)+O(�2,�2,��) (33)
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Throughout this approximation, the non-reflecting condition (Equation (32)) leads to the following
evolution equation:

qLn (0,0)
�V�

�t
= �qLn

��
(0,0)

�V�

�x
+ �qLn

��
(0,0)

�V�

�y
(34)

This corresponds to a local BC, but is only approximately of non-reflecting nature as it potentially
generates large reflections of outgoing waves for which k or l are large.

After some algebraic manipulations, the previous Equation (34) can be expressed in terms of
the characteristic variables W, and reads for the top face

�W5

�t
+(0,w,0,0,u)

�W
�x

+(0,0,w,0,v)
�W
�y

=0 (35)

when only the acoustic wave associated with w−c enters in the computational domain, and

�W1

�t
+(u,0,0,0,0)

�W
�x

+(v,0,0,0,0)
�W
�y

= 0

�W2

�t
+
(
0,u,0,

1

2
(w+c),

1

2
(c−w)

)
�W
�x

+(0,v,0,0,0)
�W
�y

= 0

�W3

�t
+(0,0,u,0,0)

�W
�x

+
(
0,0,v,

1

2
(w+c),

1

2
(c−w)

)
�W
�y

= 0

�W5

�t
+
(
0,

1

2
(w+c),0,0,u

)
�W
�x

+
(
0,0,

1

2
(w+c),0,v

)
�W
�y

= 0

(36)

when the waves associated with w−c and w are incoming waves.

3.5.2. Present modifications. In the original Giles paper [5], the state vector V̄ is supposed to be
known by a preliminary steady simulation or by an analytical formulation. For our final application,
this reference state is determined by a sliding time average. This variation in time of the reference
state enables to reduce the strength of outgoing waves by a continuous adaptation of this reference
state to the real flow, and to limit the wavenumber of these perturbations. This feature is important
in the context of the approximation done for the unsteady Giles condition.

However, this BC does not assure that the average pressure, as example, remains close to the
prescribed value. The passage of a perturbation might cause a drift away from this, and one has
to simulate the effects of a large undisturbed atmosphere surrounding the computational domain.
To do that, the relaxation process proposed in Equation (12) is imposed on the reference state.

As explained by Bruneau and Creuse [18], the strength of a characteristic wave is in fact
decomposed into two parts: one is related to the evolution of the reference state and the other one
is due to the perturbations around the reference state. This second strength is determined by the
non-reflecting BCs (Equations (35) or (36)).

To evaluate the first part, the same sliding average in time is not only applied to the boundary
point but also to the first two interior points. These three points allow the determination of the
outgoing waves strength, and then the incoming waves strength can be determined by specifying
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a physical behaviour. For the top face, the same relaxation process is applied to the reference
pressure as described in Section 3.4.

It can be noticed that all BCs presented in Sections 3.2 or 3.4 could be used for the sliding time
average state.

3.6. Corner treatment

To conclude with the BCs, a simple specific corner treatment is presented. A corner point of the
computational domain in finite difference discretization constitutes a singular point in terms of BC
specification. Two classic treatments can be used:

(i) Extrapolation method: the state vector is calculated from an interpolation between the two
neighbouring border points. In our experiment, this leads to spurious pressure waves, which
might propagate into the domain and causes the divergence of the calculation and Lele filter
cannot overcome this drawback.

(ii) Segregation method: the corner point is associated only to one border, the BC applied at
this border takes into account this point, while the BC of the other side is simply ignored.
This method has two drawbacks: the first one lies in a di-symmetrization (one condition
is assumed to predominate the other one) and secondly, low-level perturbation waves are
generated, and must be damped by the application of the Lele filter [13] near the border, or
a sponge-layer region.

A different treatment for these corner points is proposed and tested here. It is assumed that the
direction of the waves coming at the corner is given by n (see Figure 2), and the two points designed
by a new discretization point (crosses points) are used. The lateral BCs presented in Section (3.2)
is employed in the (n, t) frame. For the sake of simplicity, the two-dimensional case is the only
one presented here. To discretize the terms at the corner, the following procedure is used:

(i) The NS equations are discretized with the same finite difference scheme as an interior
point. The compact schemes are upwinded at the boundary as proposed in [19]. Only the
neighbouring boundary points are used.

(ii) The discretized equations are projected on the (n, t) frame, the term corresponding to the
component in the n-direction is subtracted to the discretized equations.

Figure 2. Corner discretization.
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(iii) A new formulation for the n-component is added to the previous equations. This term
results in the NS-characteristic BC (NSCBC) equations for the n-direction, and the new
discretization points are used to compute the strength of the outgoing characteristic waves
Li . For the present study, a second-order accuracy formula is used to compute these Li .

For example, the zero-rotational condition in the (n, t) frame is

�(V ·n)

�t
− �(V ·t)

�n
=0 (37)

For certain cases, we observe the development of numerical wiggles near the corner points. These
difficulties are linked to the fact that, physically, for a single vortex placed at the centre of the
computational domain discretized by a symmetric mesh, the velocity must be in the t-direction.
This corresponds to a zero n-component, which poses many problems for the NSCBC conditions
as they constitute an ill-conditioned problem. Since the velocity in the n-direction is very small,
the nature of the BC can switch at each time step from an inflow condition to an outflow ones.

For this case, we propose using the other option points, symbolized by squares in Figure 2,
that simply break the symmetry and lead to a non-zero velocity component in the new resulting
n′-direction. The NSCBC conditions are now expressed in the (n′, t′) frame, using a first-order
formula for the Li calculation.

With our application, there is no influence on the choice of this other discretization points. The
choice is left to the user.

In practice, to switch from the first corner discretization ((n, t) frame) to the ((n′, t′) frame), the
velocity direction is tested during the calculation at the point denoted with a star (�) in Figure 2:

if
V ·n
‖V‖>0.001 ⇒ use (n, t)

else ⇒ use (n′, t′)
(38)

The gain of corner point treatment is discussed in Section 5.1.

4. NUMERICAL APPROXIMATION

In this section we present the specific numerical treatment used for the spatial simulation of a two
co-rotating vortices system.

4.1. Definition of the sponge layer

Although our BCs are non-reflective, some spurious waves could be generated and a sponge layer
must be added to reduce the amplitude of the outgoing waves in the hope to reduce the reflecting
waves. For the direct numerical simulation of jet flows, sponge layers are widely used (see for
example [20, 21]). They offer the possibility to dump outgoing waves, thus reducing significantly
unphysical reflections, by using a second-order filter [22]. Inside these sponge layers, a source term
can be added to the NS equations to relax the state vector to a known reference state (analytical
solution or undisturbed flow).

In our case, no sponge layer is set at the top face since the resulting vortex from the merging
process across this boundary is unknown. Adding a second-order filter at this face produces
perturbations upstream from this boundary.
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At the lateral faces, a sponge layer is added to the computational domain, in which a second-
order filter can be applied on several points close to the border (here, no more than five points).
The state vector U is filtered in this zone to give a state U f, for the x-downwind side defined by

U f
i, j,k =Ui, j,k−�

(
xi, j,k−xsponge
xim, j,k−xsponge

)1.5

×
[
3

2
Ui, j,k− 1

4

(
Ui+1, j,k+Ui−1, j,k+Ui, j+1,k+Ui, j−1,k+Ui, j,k+1+Ui, j,k−1

)]
(39)

where im is the maximum value of the i index and xsponge is the abscissa of the sponge layer
beginning. � is an arbitrary parameter, which controls the filtering intensity. A value of 0.01 is
used in our computations. For the spatial merging study, xsponge is equal to the abscissa of the
third point from the considered x-downwind side.

Moreover, with the lateral BC exposed in Section 3.2, the axial velocity is not prescribed and
a drift from the initial value was observed. To suppress this phenomenon, a relaxation process is
incorporated in the equation of the axial velocity component. We have chosen to apply this process
on the averaged axial velocity w̄, contrary to the classical formulation, where it is applied directly
on the instantaneous velocity. This choice has been motivated by the reduction of the reflecting
waves strengths coming from this relaxation. Physically, this relaxation means that a perturbation
can create a drift from the prescribed velocity when leaving the computational domain, but the
mean velocity should remain close and relax towards it. A source term is added on the right-hand
side (Equation (1)) of the momentum equation in the axial direction such as

��w

�t
=RHS+�s(�̄w̄− �̄win) (40)

where �̄ designs a sliding average in time of the variable �, win represents the freestream axial
velocity and �s a free parameter to adjust the relaxation strength. We found that �s=0.05 appears
to be sufficient.

4.2. Selective artificial dissipation

It is well known that centered finite difference schemes are subject to numerical instabilities when
spurious solutions from the discrete problem are excited by the approximations caused by the
BCs, grid stretching or under-resolved flow gradients. This type of high wavenumber instability
may be overcome by either adding an artificial dissipation through upwinding, by adding explicit
damping terms, or by filtering the solution. We have chosen to follow the approach of Tam and
Webb [23] and Barone [19] by adding a selective damping term to the equations. Requirements for
the damping term include: (1) it must be strongly limited for well-resolved spatial wavenumbers,
(2) error estimation from the added dissipative terms must be available (3) the additional error
from the damping operator should be linked to the ratio between the flow and mesh scales instead
of only to the grid spacing. The suitable artificial dissipation operator is an approximation of the
sixth derivative scaled by the fifth power of the grid spacing:

Dx =�(�x)5
�6U
�x6

(41)
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The sixth derivative is chosen due to the k6 scaling in the spectral space, where k is the spatial
wavenumber. The damping is strongly restricted to the high wavenumber of the spectrum due to
this functional form.

Given that a compact approximation to the sixth derivative will more faithfully represent the
k6 behaviour in spectral space than an explicit scheme, we determine implicitly D� by using the
finite difference approximation for the sixth derivative in the computational space:

�6U

��6

∣∣∣∣∣
i−1

+�
�6U

��6

∣∣∣∣∣
i

+ �6U

��6

∣∣∣∣∣
i+1

=a0Ui +
3∑

l=1
al(Ui+l +Ui−l) (42)

with

�=3, a0=80, a1=−60, a2=24, a3=−4 (43)

For the two first interior points, the artificial dissipation must be modified, using a second- and a
fourth-order derivative, respectively.

�2U

��2

∣∣∣∣∣
i−1

+10
�2U

��2

∣∣∣∣∣
i

+ �2U

��2

∣∣∣∣∣
i+1

=2Ui −(Ui+1+Ui−1) (44)

�4U

��4

∣∣∣∣∣
i−1

+5
�4U

��4

∣∣∣∣∣
i

+ �4U

��4

∣∣∣∣∣
i+1

=36Ui −24(Ui+1+Ui−1)+6(Ui+2+Ui−2) (45)

For the boundary points, the artificial dissipation is set to zero.
The artificial dissipation D� is first computed in the computational space and then expressed in

the physical space using the relation

Dx = 1

x�
D� (46)

In order to compute the metric term x�, Lele’s compact formulation [13] is used as approximation
of the first-order derivative. For our computations, the value of the parameter � (in Equation (41)),
which controls the strength of the dissipation is set between 0.001 and 0.006.

5. NUMERICAL TOOLS VALIDATION

5.1. Influence of the lateral BC

To see the influence of the lateral BCs, it has been chosen to simulate a co-rotating vortex system
in a bi-dimensional square domain. The vortex dynamics is governed by a rotational motion of the
vortex system due to the induced velocity of one vortex on its neighbour, while the vortex system
does not reach the critical value (a/d)c∼0.22 [24] between the vortex core size a (dispersion radius)
and the separation distance d . For all the tests presented in this section the initial characteristic
parameter is (a/d)0=0.1 and the Reynolds number is Re� =106 (where � is the circulation of
one vortex). As the viscosity effects are very slight, the vortex core size increases very slowly.
There are no external forces to push one vortex towards the other, thus the separation distance
between the two vortices does not change. The ratio a/d grows very slowly, and a large number
of turnover could be performed before this ratio reaches its critical value (a/d)c.
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Figure 3. Computational domain and boundary specification.

The vortex system is initially placed on the computational domain centre (Figure 3). Each vortex
is initially defined with a Lamb–Oseen formulation. The vorticity field is described by

1= ��

�r2c
exp(−�(r/rc)

2), r =
√

(X−X1)2+(Y −Y1)2 (47)

where (Xi ,Yi ) are the coordinates of one vortex centre, �=1.122, and rc its core radius defined
as the radius where the azimuthal velocity is maximum. Note that the circulation is related to the
maximum azimuthal velocity V0 by �=2��rcV0 with �=1.4. For this specific study, V0 is set to
0.4 and the separation distance d0 between the two vortices is equal to 10rc. The domain considered
is a square of length L=31rc. These choices of domain length and azimuthal maximum velocity
are intentionally chosen to be defavourable for the treatment of BCs. Indeed, the induced velocity
by the vortex system at the boundaries is not negligible, and approximatively equals to ∼9.3%V0.
When considering the final spatial simulation, the transverse domain length cannot be too large
for computational cost reasons. To test our BCs in preparation of this application, the size of the
computational domain is relatively small, and the mesh is stretched towards the border in order to
limit the total number of grid points. If one vortex enters in the stretched region, the mesh is too
coarse to discretize properly the vortex flow and leads to an unacceptable numerical solution. As
there are no external forces, the vortex system should remain in the centre of the domain where
the grid resolution is fine.

The influence of the lateral BCs is analysed regarding their capacity to respect the property to
maintain the vortex system in the domain centre, and to respect the turnover period of the vortex
system, defined by T =2�2d20/�. Five different BCs have been tested:

(i) periodic,
(ii) symmetric,
(iii) non-reflective (Section 3.2, (i)),
(iv) inflow/outflow BC associated with a zero-rotational condition (Section 3.2, (ii)),
(v) inflow/outflow BC associated with the use of an expansion (Section 3.2, (iii)).
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Figure 4. Horizontal (a) and vertical (b) position of one vortex centre as function to
the normalized time for different lateral boundary conditions. Dashed line: symmetric,

solid line: zero rotational and dashed-dot line: non-reflective.

It should be noticed that the two first conditions are classically used for vortex dynamics simulation
in conjunction with large domains to reduce their effects. The use of such domain is acceptable
for temporal simulation, but leads to huge number of points for spatial simulations.

All calculations were performed until ∼11 turnover periods of the vortex system. Figure 4
represents the vortex centre position of one vortex as function to the normalized time t∗ = t/T .
The first analysis focuses around the time t∗ =5, as the effects of the lateral BC are not visible
before. This value of five turnover periods corresponds to the maximum turnover number observed
in our final application. The results with periodic conditions are not plotted on this figure as they
are identical to the ones with symmetric conditions. The vortex centre is localized by the vorticity
extremum. At the time t∗ =5, the vortex should be at its initial position (X1=−5;Y1=0), all the
results differ from this position:

• the use of symmetric condition (ii) leads to slight time advanced solution,
• with the non-reflective condition (iii) the solution is slightly delayed,
• with the condition (iv) the solution is in good agreement for the horizontal position and the

closer for the vertical position,
• for the condition (v), the vortex system is completely shifted from the domain centre but the

results are in good agreement with the physics as far as the turnover period of the vortex
system is concerned (see Figure 5(a)).

This discrepancy of the vortex position increases with time, for example at t∗ =10T with the
symmetric BC the time advanced solution reaches one half turnover period.

The second point under interest lies in the capacity to maintain the vortex system in the centre
of the calculation domain. All NSCBC show the same drawback that the vortex system deviates
from the centre, but the magnitude differs with respect to the type of NSCBC. Indeed, with the
conditions (iv) this drift increases slowly in time, while it is more sudden and pronounced with
the condition (iii), and seems to evolve linearly with the conditions (v) (see Figure 5(b)).

An observation of the streamlines (Figure 6) confirm the previous behaviours. The confinement
effect is well depicted with the symmetric or periodic BCs, and the use of such conditions for
vortex flow requires large domain to minimize this effect.
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Figure 5. (a) Qualitative analysis of the streamlines at the normalized time t∗ = t/T =5 for
the series expansion boundary conditions and (b) horizontal position of one vortex centre for
different lateral boundary conditions. Dashed line: non-reflective, solid line: zero rotational and

dashed-dot line: series expansion.

As regards the BCs based on the NSCBC approach, the streamlines show the inflow and the
outflow at the border. This illustrates the difficulty to build such BCs that must be

• non-reflecting for perturbations,
• able to predict correctly the flow coming from the exterior of the domain.

The purely non-reflecting BC (iii) fails to fulfil this second point. Only the two new approaches
(iv) and (v) are able to satisfy the two properties. However, some spurious waves propagating into
the domain or skewness in the inflow rate lead to a displacement of the vortex system.

To damp these spurious waves a sponge or buffer layer with a filter (see Section 4.1 for example)
can be used. The skewness in the inflow rate has been observed principally in the neighbourhood
of the corners, since the direction of the flow velocity is not well predicted at this point. This
behaviour should be improved by the use of the corner treatment (Section 3.6). Calculations
performed with sponge layer and corner treatment are shown on Figure 7. For condition (iii), the
influence of both sponge layer or corner treatment are studied separately. It appears clearly that
the use of a buffer layer is not sufficient in this case, but the additional corner treatment allows to
minimize the deviation of the vortex system for long calculation time. However, as in the case of
BCs with series expansion (v), the results show the slow time deviation of the vortex position. The
use of the BCs with series expansion (v) without numerical treatment leads to a deviation of the
vortex system starting from the beginning of the simulation (Figure 5(b)). With the buffer layer
and corner treatment this deviation begins latter and is damped. While with the zero-rotational BCs
(iv) and additional numerical treatments, the results are very similar to the one without numerical
treatments (Figure 5(b)).

These results show the difficulty to correctly take into account the flow induced by the vortex
system at the borders, linked to the non-zero circulation of the co-rotating vortex system. For three-
dimensional spatial development of a co-rotating vortex system, conditions (iv) or (v) (with a buffer
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Figure 6. Qualitative analysis of the different lateral boundary conditions, illustrated by the streamlines at
the normalized time t∗ = t/T =5: (a) symmetric; (b) periodic; (c) non-reflective; and (d) zero rotational.

layer) seem to be the best choice, as they respect the physics more. However, condition (v) requires
the determination of expansion coefficients (Section 3.2), which increases the computational cost
and so will not be used in our final application.

5.2. Influence of the inflow BC

To test the inflow BC, three-dimensional simulations of an isolated vortex are considered. The
computational domain is defined by a box of 40rc in the transverse direction and 100rc in the axial
one. A Lamb–Oseen vortex model is used to determine the transverse velocity values for the inflow
BC. The Reynolds number based on the vortex circulation is Re� =104, as employed for the final
application.
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The objective of these simulations is to show the influence of the stagnation pressure and
temperature on the development of an isolated vortex. The results are analysed once a statistical
time converged solution has been obtained. The total temperature remains identical in all cases,
while the parameter � introduced in Equation (22) varies. Five values have been tested: �=
0.0,0.1,0.2,0.4,0.6. Note that with an increased value of �, the deficit of the stagnation pressure
in the vortex core rises.

In Figure 8, the axial evolution of the axial velocity in the vortex core is presented. For a small
value of �, the axial velocity decreases linearly. This is due to the increase of the minimum pressure

5 6 7 8 9 10 11

t*=t/T

-5

0

5

10

15

20

25

30

X1

5 6 7 8 9 10 11

t*=t/T

-15

-10

-5

0

5

10

15

20

25

30

Y1

(a) (b)

Figure 7. (a) Horizontal and (b) vertical position of one vortex centre as function to the normalized time,
for different lateral boundary conditions coupled to a numerical treatment at the boundaries. Dashed line:
non-reflective with corner treatment, dashed-dot–dot line: non-reflective without corner treatment, solid

line: inflow/outflow with zero rotational, dashed-dot line: inflow/outflow with series expansion.
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Figure 9. Influence of � parameter at the inflow boundary z=0: (a) pressure distribution in the vortex
and (b) axial velocity distribution through the vortex.

in the vortex core, which is correlated to the diminishing of the transverse velocity components
caused by the diffusion. Increasing the value of � leads to a decrease of the axial velocity level. For
the values 0.4 and 0.6, a large decrease of the axial velocity is observed at a particular downstream
distance, and this distance between the inflow face and the breaking point is inversely proportional
to �.

Figure 9(a) presents the pressure distribution through the vortex in the bottom plane. This field
is not modified by the variation of the �-value, which can be explained by the fact that the pressure
distribution derives directly from an equilibrium between the pressure and the centrifugal forces
(Equation (23)). A modification of the stagnation pressure induces only a variation of the axial
velocity. In particular, if the value of � increases, the axial velocity peak decreases (Figure 9(b))
at the bottom face. Moreover, due to the viscosity effects, this velocity peak continues to decrease
in the downstream distance. To characterize the flow, we can use the swirl parameter S, defined
as the ratio between the azimuthal velocity peak and axial one. Billant et al. [25] have shown that
for swirling jets, the vortex breakdown phenomenon appears when the swirl parameter reaches a
critical value of Sc=1.4±0.18. For the two cases in which the vortex breakdown phenomenon
occurs here, �=0.4 and �=0.6, the swirl number evaluated at the axial position of z=20 and
z=54, respectively, is in good agreement with the experimental critical value.

Since this strong physical phenomenon can disturb the spatial simulation of the merging process,
�=0 will be used for our final simulation. This means that only ‘jet-vortex’ are under consideration.
This limitation is not too restrictive since a wake vortex generated by a vorticity wake roll-up
shows such characteristics in its first stage of formation.

5.3. Influence of the outflow condition

In order to validate the non-reflective character of the outflow BC, two-dimensional simulations
of the convection of a Lamb–Oseen vortex through the boundary were performed. This test case
is more difficult for the BC than for the final case, because the vortex axis is parallel and not
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Figure 10. Line isopressure values: (a) non-reflective condition and (b) Giles condition.

perpendicular to the exit plane. However, as some perturbations will be injected for the final
simulation, the vortex axis might become inclined, or the vortex might become unstructured and
the situation is not too far from the simplified one proposed here.

Two BCs are investigated, the classical non-reflective one and the proposed one (Section 3.5)
based on Giles approach. The non-dimensional convection velocity is set to 0.2. The iso-pressure
lines are used to discuss the efficiency of the BC. The vortex travels through the boundary
without generating unphysical reflections for the Giles conditions unlike the classical non-reflecting
condition as seen in Figure 10. More precisely, the time evolution of the maximum of vorticity
and pressure are presented. Both quantities are made non-dimensional by their initial values. The
wave reflection phenomenon obtained with the classical non-reflecting condition is brought out by
the increase of the maximum value of pressure or vorticity as the vortex leaves the computational
domain (Figure 11). It must be noticed that the non-reflecting condition generates vorticity, which
could be dramatic for vortex simulation. For the final simulation, Giles condition will be used at
the top face.

5.4. Influence of the artificial dissipation

Two aspects of the selective artificial dissipation proposed in Section 4.2 will be tested here:

(i) overestimation of viscosity,
(ii) damping of perturbations.

For the first aspect (i), we compare the time evolution of the radius of an isolated Lamb–Oseen
vortex computed by a two-dimensional simulation. The core radius rc increases by diffusion
according to

rc(t)=
√
4	�t+r2c0 (48)
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Figure 12. Evolution of vortex core radius of an isolated vortex by diffusion. Solid line: theoretical law,
◦: without artificial dissipation and �: with artificial dissipation.

where 	 is the kinematic viscosity, rc the initial vortex radius and �=1.122. In Figure 12, the
theoretical law (Equation (48)) is compared with two simulations, one being performed with
artificial dissipation and the other without dissipation. The value of the free coefficient in the
artificial dissipation is taken equal to 0.002. There is a very good agreement between the numerical
results and theory, the artificial dissipation has no major effect on the diffusion process of an
isolated vortex.

For the second aspect (ii), three-dimensional temporal simulations were performed following
the work of Le-Dizes and Laporte [26]. They studied the merging process of two co-rotating
vortices by the development of a short-wavelength elliptic instability (Figure 13(a)), following the
methodology supported by temporal direct numerical simulations (periodic BCs were imposed in

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:23–56
DOI: 10.1002/fld



STRATEGY FOR SPATIAL SIMULATION OF CO-ROTATING VORTICES 47

X

Y

Z

0 0.5 1 1.5 2 2.5 3

t*=t/T

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

E
c k

2σ
num

(a) (b)

Figure 13. Elliptic instability in a co-rotating vortex system by temporal DNS. (a) Selected vorticity
isosurface ||=0.8|max| at the time t∗ = t/T =1.56 where T =2�2d20/� is the turnover period of the
vortex system and (b) history time of the kinetic energy of the unstable mode: ◦ without artificial dissipation

and � with artificial dissipation.

the axial direction). Here, we analyse only the growth rate of the unstable mode, which dominates
the dynamics, following its kinetic energy time evolution.

The initial condition consists of a co-rotating vortex system with a small perturbation corre-
sponding exactly to three wavelengths of elliptic instability. To that end, a sinusoidal law is imposed
on one velocity component of one vortex with a very small amplitude A=0.005V0 (here V0=0.1
is the maximum vortex azimuthal velocity). The axial domain length is L=3� where � is the
wavelength of the most unstable mode predicted by the formulation of Le-Dizes and Laporte. To
calculate its kinetic energy, a Fast Fourier Transform is performed in the axial direction (details in
Laporte and Corjon [27], Section C). The Reynolds number based on the circulation is Re� =104.
The time evolution of the kinetic energy of the unstable mode is plotted in Figure 13. The dissipa-
tion does not modify the unsteady three-dimensional dynamics. The instability growth rate 
num
is identical for the two simulations with and without artificial dissipation. However, as expected,
the kinetic energy level is slightly lower for the case with artificial dissipation, but only during the
linear phase of the instability development. The predicted value of the instability growth rate can
be compared with this theoretical value, and a difference of only ∼8% is obtained [26].

6. FIRST VALIDATION: VORTEX BREAKDOWN

This section presents the validation of the numerical tool to simulate the spatial development of a
vortex. Indeed, the approach often employed to simulate an aircraft wake vortex is the temporal
approach. It is based on the assumption that the axial flow gradients can be neglected in comparison
to the transverse ones. However, a strong phenomenon responsible for a wake vortex decay is the so-
called vortex breakdown ([25, 28, 29] and therein) where the axial gradients play an important role.
This physical phenomenon is characterized by a re-circulation zone in the vortex core, which both
its form and size are dependent to the characteristic flow parameters. Vortex breakdown has inspired
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many investigations as it is encountered in many flow types (aerodynamics, combustion, etc.) and
presents different characteristics (number of stagnation points and re-circulation regions, steady
and unsteady states, etc.). Our goal is not to analyse this phenomenon but to use it as a validation
exercise for the spatial evolution of a vortex flow. A simulation identical to the one of Ruith
et al. [29] is reproduced. They analysed the vortex breakdown by DNS regarding the three-
dimensionality and unsteadiness effects with respect to the existence of this phenomenon.

Two flow configurations have been chosen to compare our simulation to the results of [29].
The first one corresponds to an axisymmetric steady vortex breakdown and the second one to an
unsteady case. These cases are characterized, respectively, by a ratio between the free stream axial
and azimuthal velocities, S=v�/W =0.8944 and S=1.095 (without axial velocity deficit in the
vortex core). The Reynolds number is Re=Wrc/	=200 based on the free stream axial velocity
W , the vortex core radius rc and viscosity 	. The initial condition is obtained from a Grabowski
profile and consists in a single tubular vortex placed at the centre of the computational domain
which is a square with a side length of 30rc. In the transverse xy-directions the mesh is regular in
a square box around the vortex with a resolution of �x =�y =0.1rc. The grid is stretched towards
the boundaries and regular in the axial z-direction with �z =0.1rc. For the inflow condition, the
three velocity components and the temperature are imposed. This is similar to a value of the
parameter � equal to 1 (Equation (22)).

The steady axisymmetric vortex breakdown is illustrated in the Figure 14, where a selected
isosurface and isocontours of vorticity in the first plane are plotted. It can be observed that the
vortex breakdown for this flow configuration (S=0.8944) is characterized by a small bubble of
vorticity with an internal stagnation point. Ruith et al. [29] found a steady vortex breakdown for
this configuration, which is also obtained in our simulation, as shown by the axial velocity profiles
in the longitudinal direction at different times (Figure 14(b)).

Ruith et al. [29] show that for the second configuration with S=1.095 and Re=200, the
vortex breakdown reaches a quasi-steady state, before becoming unstable and unsteady. These
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Figure 14. Steady vortex breakdown for the case S=0.8944 and Re=200. (a) Selected isosurface of
vorticity ||=0.5|max| and vorticity isocontours in the first plane and (b) axial velocity profiles in

longitudinal direction at different time t∗ = t/(rc/W ).
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Figure 15. Vortex breakdown for the case S=1.095 and Re=200. Visualization of a
selected vorticity isosurface ||=0.4|max|: (a) quasi-steady state at t∗ = t/(R/U )=100.4

and (b) unsteady state at t∗ = t/(R/U )=164.4.

Figure 16. Projected streamlines in the median plane for the axisymmetric quasi-steady vortex breakdown:
(a) from Ruith et al. [29] (by courtesy JFM) and (b) present result.

two states are illustrated in Figure 15 for a selected constant vorticity isosurface at two different
times. The unsteadiness character is marked by an helical form behind the vortex breakdown.
The quasi-steady state allows comparing our results with the ones of Ruith et al. The streamlines
are plotted in Figure 16 for the two simulations; there is a good agreement for the position and
size of the re-circulation zone. This agreement is also observed in the axial velocity profiles in
longitudinal direction plotted on Figure 17. The differences of the vortex breakdown shape and
axial velocity peaks (at z=3, a difference of 20%) can be explained by our approximation of
axisymmetric vortex flow on a Cartesian mesh and by the fact that the second-order difference
finite scheme employed by Ruith et al. is more dissipative than our scheme (sixth-order compact
scheme). Moreover, it is difficult to find the quasi-steady state, which seems to be dependent on the
numerical schemes. This comparison allows us to be confident in our numerical tools to reproduce,
applying appropriated BCs, a spatial development of vortex flow. The next section presents the

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:23–56
DOI: 10.1002/fld



50 H. DENIAU AND L. NYBELEN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

z

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

vz

Figure 17. Axial velocity profiles along the vortex core in the longitudinal direction. Solid line: present
result and ◦: points extracted from the simulation of Ruith et al. [29].

final application: spatial simulation of three-dimensional unstable merging of a co-rotating vortex
system.

7. SPATIAL SIMULATION OF VORTEX MERGING

The physical merging phenomenon of a co-rotating vortex system [24] can take place either
under stable conditions or through the development of a short-wavelength elliptic instability,
called unstable merging. The stable merging dynamics is essentially two-dimensional whereas the
elliptic instability implies thre-dimensional considerations. The dynamics of such instabilities is
characterized by an oscillation of the vortex core position in the axial direction. For saturating
instability, the flow becomes pseudo-turbulent leading to a disturbed final vortex, obtained by a
re-organization of the turbulent structures due to the global rotational motion. Here, we proposed
to simulate the spatial development of such an instability by DNS. The fundamental goal of the
spatial simulation is to take into account the axial velocity, and thus to show and determine its
influence on the short-wavelength elliptic instability. Lacaze et al. [30] show by a theoretical
stability analysis of a Batchelor vortex model (a Lamb–Oseen vortex+axial velocity) that other
unstable modes of elliptic instability can develop in the vortex due to the axial velocity. The
following two paragraphs deal with the computational set-up and the first quantitative analysis.

7.1. Computational set-up

Three vortex systems have been considered with various ratio of axial and azimuthal velocity, as
summarized in Table I. All calculations are initialized identically, and using the same BCs and
mesh grid resolution.

The inflow BC detailed in Section 3.3 requires the knowledge of transverse velocity compo-
nents. The latter are obtained by a first two-dimensional temporal simulation in order to obtain a
preliminary solution to the NS equations (as the superposition of two vortices is not a solution). To
that end, two Lamb–Oseen vortices are placed in the domain centre with the identical circulation
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Table I. Summary of three-dimensional spatial simulations of co-rotating vortex pair.

Configuration 1 2 3

Domain Lx , Ly , Lz 120∗120∗420 120∗120∗400 100∗100∗500
Mesh nx,ny,nz 291,291,1401 291,291,1301 241,241,2001
V0/W at z=0 1.55 0.62 0.32
q at z=0 1.38 12.97 5.02

V0 is the maximum azimuthal velocity, W the free stream axial velocity and q=1.569∗V0/(W−Wc)
is the swirl number (Wc is the axial velocity at the vortex centre).

� and core size rc, and a separation distance d0. The Reynolds number based on the circulation is
Re� =104. The computational domain is initialized by duplicating the two-dimensional velocity
field into each axial plane, added to a constant free stream axial velocity W =0.2. Note that this
velocity determines the stagnation pressure at the inflow condition. A first simulation is performed
to reach a time converged solution.

The computational domain is represented in Figure 1 and the dimensions are summarized in
Table I. In the xy-directions, the mesh is regular in the region of the vortex dynamics interest
(resolution �x,y =0.15rc) and then stretched towards the boundaries. It is regular in the axial
direction with a resolution of �z =0.3rc. The main difficulty is to correctly estimate the axial length
necessary to capture the complete merging process. Indeed, this is the highest constraint to perform
spatial three-dimensional evolution of a vortex system. Preliminary two- and three-dimensional
temporal simulations have been performed to analyse the merging process without axial velocity
for the vortex systems considered here. These results showed that a range of axial domain lengths
can be identified to simulate the complete merging process of co-rotating vortices, using the
transformation Lz =W ∗ t . Moreover, the theoretical prediction of Le-Dizes and Laporte [26] for
a Lamb–Oseen vortex system without axial velocity has been used to determine the different
instability wavelengths �. For the vortex systems considered here, the instability wavelength of the
most unstable mode is close to �∼3rc. We assumed that the wavelengths of elliptic instabilities
with axial flow are close to the ones without axial flow. To capture the spatial development of such
instabilities, an axial resolution of 10 grid points per wavelength has been chosen and seems to be
enough. It leads to a very large number of grid points (Table I). We performed massively parallel
computations on an IBM ‘Blue Gene’, using 1024 processors and each configuration required a
total CPU time of 516000h.

When a time converged solution is obtained, a small perturbation is added to the transverse
velocity components at the bottom face in order to trigger the instability development. The magni-
tude of the perturbations is calculated by a random value varying in time close to 10−4V0. This
perturbation corresponds to small displacements of the vortex core position, as it is a known effect
of development of short-wavelength elliptic instability. More precisely, a vorticity perturbation is
added at the inflow plane around each vortex core, which acts like a small displacement of a
Lamb–Oseen vortex as:

′ =(�1 cos�+�2 sin�)exp

(
− r2

b′2

)
(49)

where �1 and �2 are small random numbers and b′ adjusts the size of the perturbed area (here
b′ =2rc). Through the integration of the Biot and Savart law, an analytical formulation can be
established for the resulting perturbation velocities.
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Figure 18. Configuration 1: spatial evolution of co-rotating vortices through the development of short-
wavelength instability illustrated by a selected isosurface of vorticity magnitude ||=0.23|max|.

7.2. Computational results

Configuration 1 is presented in Figure 18. It can be observed that the tubular vortices are deformed
very close to the inflow condition, corresponding to the consequences of the instability development.
When the instability saturates, the flow becomes turbulent and the large vorticity structures are
re-organized into a final disturbed vortex due to the global rotational motion. This result shows
that the vortex deformations are elongated in the longitudinal direction due to the axial velocity,
contrary to a temporal simulation without axial velocity (Figure 13). In the latter case, the elliptic
instability is known to result from the resonance of the two Kelvin modes m=−1 and 1 [24]. With
axial velocity, these modes can be damped and new modes (e.g. m=−2 and 0) can be excited
[30]. The vortex structure deformations seem to result from the amplification of these new modes
since their consequences are different from the ones observed and clearly identified in the temporal
approach without axial flow. This preliminary physical analysis must be continued to determine
precisely how the merging process is affected by the development of these new modes.

The instability amplification is quantified by plotting the variance of the cross-flow and axial
kinetic energy as represented in (Figure 19(b)). These quantities are integrated in each transverse
plane. It must be noticed that all results presented here correspond to a statistical converged state.
This means that the mean or the variance of the velocity component for example does not vary
when the number of time iteration increases.

The flow is laminar and no instability is yet amplified close to the inflow plane (Figure 19(b)).
Beyond the downstream distance z=50rc, the variance increases strongly to reach a saturation
level, corresponding to the distance where the merging of the co-rotating vortices starts. The time
averaged vortex centre positions, localized by a vorticity extremum, are plotted in Figure 19(a).
The rotational motion of one vortex around the other is well illustrated. It can be observed that
the vortex system deviates from the domain centre. It can be noticed that this drift was observed
only when a perturbation is injected at the inflow plane. For all simulations presented here, it has
been verified that the vortex system and the final vortex remain in the regular transverse domain
where the resolution is fine (domain Lx ∗Ly =25∗25).
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Figure 19. Configuration 1: (a) transverse vortex centre positions as function of the axial distance and
(b) variance of the cross-flow and axial kinetic energy.

Vortex breakdown

Figure 20. Configuration 2: selected isosurface of vorticity magnitude.

The results of the vortex flow configuration 2 is illustrated in Figure 20. The spatial dynamics
is marked by a sudden and drastic change while the elliptic instability have started to be amplified
(small oscillations of the vortex shapes). This physical phenomenon is called vortex breakdown
(see Section 6) and leads to the formation of a bubble followed by a wake characterized by large
helical structures. A reorganization of these structures into a single vortex can take place due to
the global rotational motion (axisymmetrization process).

For configuration 3, which is characterized by the smallest ratio of the velocity peaks, no vortex
breakdown is observed instead a spatial development of an elliptic instability (Figure 21) such as
configuration 1. Nevertheless, the axial velocity effects are smaller and the vortex deformations are
similar to those obtained by temporal simulations (Figure 13) with well-separated vortices. From
the axial position z∼200, small oscillations of the vortex shape is observed. A spatial growth
of these oscillations occurs and leads to an exchange of vorticity between the two vortices, and
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Figure 21. Configuration 3: selected isosurface of vorticity magnitude.
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Figure 22. Configuration 3: (a) horizontal vortex centre positions as function of the axial distance and
(b) variance of the cross-flow and axial kinetic energy.

finally to the merging. The spatial evolution of the kinetic energy variance traduces this growth of
perturbations (Figure 22) until the instability saturation. The two vortices merge at the downstream
distance z∼380 just before the end of the computational domain.

8. CONCLUSIONS AND FUTURE WORK

The present numerical study has been elaborated with the objective to simulate the spatial evolution
of a co-rotating vortex system through the development of short-wavelength elliptic instabilities,
which leads to the merging of the two vortices. The main difficulties arise from the different
characteristic lengths of the flow: vortex size, instability wavelength and domain axial length to
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capture the complete merging process; and also from the capacity of the boundary conditions (BCs)
to represent such vortex flow and to suppress numerical wiggles. Thus, the BCs were adapted to
simulate the spatial evolution of vortex flow with non-zero total circulation. Three vortex flow
configurations were simulated, characterized by different swirl numbers. This parameter can be
defined simply by the velocity ratio S between the maximum azimuthal and axial velocity, or by
the one used in the stability analysis q (as defined in Table I).

The proper choice of the inflow configuration is crucial as different vortex dynamics can
take place in spatial simulations due to the effects of axial velocity, such as vortex breakdown,
development of helical instability or short-wavelength instability with new unstable modes. If
the inflow swirl number is lower than |q|<1.5, each vortex can become unstable through the
development of helical instability [31]. If the velocity peak ratio S reaches a critical value in
the approximative range of [0.89,1.4] at a downstream distance, the vortex breakdown [25] can
dominate the vortex dynamics even if some elliptic unstable mode are already excited. If large swirl
numbers are used, the curvature of the vortex system becomes very elongated and the simulation
of the complete merging process cannot be ensured due to the choice of computational domain
and since very important computational resources are required unlike for temporal simulations. In
spatial simulations it is very difficult to isolate one physical phenomenon, which makes these spatial
simulations more complex to be physically analysed. For the vortex systems considered here, our
preliminary results show that the axial velocity can modify the development of short-wavelength
instability. However, further physical analysis are required. In particular, a detailed comparison of
the results of the three configurations will be conducted by performing a Fourier series development
in transverse planes around each vortex core to characterize the vortex perturbation shape during
the development of short-wavelength instability.

In order to fully benefit from the spatial simulations, we will take into account the possible
development of convective or absolute instability but also the curvature of the vortex system,
or more generally, the three-dimensional effects, which can play a major role in the nonlinear
dynamics of vortex system.
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